

Case study

<u>Hydro-Vortex implementation in ReadyMix's concrete plant (Israel)</u>

Introduction:	ReadyMix concrete plant near Tel Aviv, Israel, was established in March 2000 to produce					
	concrete. The plant includes a pre-mix facility for concrete production, supported by a					
	concrete recycling system.					
Environmental	The ReadyMix's plant was built in major urban area with strict environmental restrictions on					
Restrictions:	Air and Water pollution for various operation reasons. In addition, the use of sedimentation					
	pools was prohibited. Israel is in a constant situation of industrial and fresh water shortage,					
	therefore – concrete plants cannot clear wastewater to the sewage system and are required					
	to recycle sludge.					
Background	Soon after ReadyMix's plant launched its operations and despite the use of a full concrete					
	recycling system (made by Stetter GmbH),a few major problems were recognized:					
	1. The amount of sediment left in the wastewater was higher than expected.					
	2. The wastewater treatment system could not handle the actual amount of sediments.					
	3. The cleaning system was frequently jammed and delayed the production process.					
	4. The use of fresh water increased – a considerable increase in unexpected costs.					
	5. Sludge was created at a faster rate then expected.					
<u> </u>						

	6. To clean the sludge, the process was constantly interrupted and halted for hours and days						
	 causing the plant heavy costs and productivity loss. 						
	A traditional concrete recycling system could not address all the above problems effectively.						
Solution	Two Hydro-Vortex systems were installed to address the problem. The first handled the large						
	sediments and the second handled the remaining smaller sediments. However, after a						
	successful trial, it was found out that only one Hydro-Vortex system could tackle the problem						
	successfully.						
Benchmark		resources	Without	With Vortex	Change %		
results:			Vortex				
	Inputs	Fresh Water	300	250	16.6%		
		Energy KW per	12000	13000	-8.33%		
		month					
	Outputs	Products (Cubic	6000	8000	33%		
		Meter Per Month)					
		Sludge (tons)	75	0	N/A		

Additional environmental benefits:

- Considerable savings in industrial and fresh water consumption.
- Reducing sludge production to 0 (zero).
- Decrease in dust pollution.

Operational benefits:

Considerable reduction in water costs.

Enabling true recycling of wastewater in cleaning and production processes.

Increase of 33% in productivity.

Significant decrease in maintenance costs.

ROI of less then 6 months without taking into account productivity gains